3.1.39 \(\int e^{a+b x} \cos (c+d x) \sin ^2(c+d x) \, dx\) [39]

Optimal. Leaf size=119 \[ \frac {b e^{a+b x} \cos (c+d x)}{4 \left (b^2+d^2\right )}-\frac {b e^{a+b x} \cos (3 c+3 d x)}{4 \left (b^2+9 d^2\right )}+\frac {d e^{a+b x} \sin (c+d x)}{4 \left (b^2+d^2\right )}-\frac {3 d e^{a+b x} \sin (3 c+3 d x)}{4 \left (b^2+9 d^2\right )} \]

[Out]

1/4*b*exp(b*x+a)*cos(d*x+c)/(b^2+d^2)-1/4*b*exp(b*x+a)*cos(3*d*x+3*c)/(b^2+9*d^2)+1/4*d*exp(b*x+a)*sin(d*x+c)/
(b^2+d^2)-3/4*d*exp(b*x+a)*sin(3*d*x+3*c)/(b^2+9*d^2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {4557, 4518} \begin {gather*} \frac {d e^{a+b x} \sin (c+d x)}{4 \left (b^2+d^2\right )}-\frac {3 d e^{a+b x} \sin (3 c+3 d x)}{4 \left (b^2+9 d^2\right )}+\frac {b e^{a+b x} \cos (c+d x)}{4 \left (b^2+d^2\right )}-\frac {b e^{a+b x} \cos (3 c+3 d x)}{4 \left (b^2+9 d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[E^(a + b*x)*Cos[c + d*x]*Sin[c + d*x]^2,x]

[Out]

(b*E^(a + b*x)*Cos[c + d*x])/(4*(b^2 + d^2)) - (b*E^(a + b*x)*Cos[3*c + 3*d*x])/(4*(b^2 + 9*d^2)) + (d*E^(a +
b*x)*Sin[c + d*x])/(4*(b^2 + d^2)) - (3*d*E^(a + b*x)*Sin[3*c + 3*d*x])/(4*(b^2 + 9*d^2))

Rule 4518

Int[Cos[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x))*(C
os[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x] + Simp[e*F^(c*(a + b*x))*(Sin[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x]
 /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 + b^2*c^2*Log[F]^2, 0]

Rule 4557

Int[Cos[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol] :
> Int[ExpandTrigReduce[F^(c*(a + b*x)), Sin[d + e*x]^m*Cos[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e, f, g
}, x] && IGtQ[m, 0] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int e^{a+b x} \cos (c+d x) \sin ^2(c+d x) \, dx &=\int \left (\frac {1}{4} e^{a+b x} \cos (c+d x)-\frac {1}{4} e^{a+b x} \cos (3 c+3 d x)\right ) \, dx\\ &=\frac {1}{4} \int e^{a+b x} \cos (c+d x) \, dx-\frac {1}{4} \int e^{a+b x} \cos (3 c+3 d x) \, dx\\ &=\frac {b e^{a+b x} \cos (c+d x)}{4 \left (b^2+d^2\right )}-\frac {b e^{a+b x} \cos (3 c+3 d x)}{4 \left (b^2+9 d^2\right )}+\frac {d e^{a+b x} \sin (c+d x)}{4 \left (b^2+d^2\right )}-\frac {3 d e^{a+b x} \sin (3 c+3 d x)}{4 \left (b^2+9 d^2\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.70, size = 74, normalized size = 0.62 \begin {gather*} \frac {1}{4} e^{a+b x} \left (\frac {b \cos (c+d x)+d \sin (c+d x)}{b^2+d^2}-\frac {b \cos (3 (c+d x))+3 d \sin (3 (c+d x))}{b^2+9 d^2}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[E^(a + b*x)*Cos[c + d*x]*Sin[c + d*x]^2,x]

[Out]

(E^(a + b*x)*((b*Cos[c + d*x] + d*Sin[c + d*x])/(b^2 + d^2) - (b*Cos[3*(c + d*x)] + 3*d*Sin[3*(c + d*x)])/(b^2
 + 9*d^2)))/4

________________________________________________________________________________________

Maple [A]
time = 0.26, size = 108, normalized size = 0.91

method result size
default \(\frac {b \,{\mathrm e}^{b x +a} \cos \left (d x +c \right )}{4 b^{2}+4 d^{2}}-\frac {b \,{\mathrm e}^{b x +a} \cos \left (3 d x +3 c \right )}{4 \left (b^{2}+9 d^{2}\right )}+\frac {d \,{\mathrm e}^{b x +a} \sin \left (d x +c \right )}{4 b^{2}+4 d^{2}}-\frac {3 d \,{\mathrm e}^{b x +a} \sin \left (3 d x +3 c \right )}{4 \left (b^{2}+9 d^{2}\right )}\) \(108\)
risch \(-\frac {{\mathrm e}^{b x +a} {\mathrm e}^{3 i d x} {\mathrm e}^{3 i c}}{8 \left (3 i d +b \right )}+\frac {{\mathrm e}^{b x +a} {\mathrm e}^{i d x} {\mathrm e}^{i c}}{8 i d +8 b}+\frac {{\mathrm e}^{b x +a} {\mathrm e}^{-i d x} {\mathrm e}^{-i c}}{-8 i d +8 b}-\frac {{\mathrm e}^{b x +a} {\mathrm e}^{-3 i d x} {\mathrm e}^{-3 i c}}{8 \left (-3 i d +b \right )}\) \(110\)
norman \(\frac {\frac {2 b \,d^{2} {\mathrm e}^{b x +a}}{b^{4}+10 b^{2} d^{2}+9 d^{4}}-\frac {2 b \,d^{2} {\mathrm e}^{b x +a} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}+\frac {2 b \left (2 b^{2}+3 d^{2}\right ) {\mathrm e}^{b x +a} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}-\frac {2 b \left (2 b^{2}+3 d^{2}\right ) {\mathrm e}^{b x +a} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}-\frac {4 b^{2} d \,{\mathrm e}^{b x +a} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}-\frac {4 b^{2} d \,{\mathrm e}^{b x +a} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}+\frac {8 d \left (2 b^{2}+3 d^{2}\right ) {\mathrm e}^{b x +a} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{b^{4}+10 b^{2} d^{2}+9 d^{4}}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}\) \(323\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(b*x+a)*cos(d*x+c)*sin(d*x+c)^2,x,method=_RETURNVERBOSE)

[Out]

1/4*b*exp(b*x+a)*cos(d*x+c)/(b^2+d^2)-1/4*b*exp(b*x+a)*cos(3*d*x+3*c)/(b^2+9*d^2)+1/4*d*exp(b*x+a)*sin(d*x+c)/
(b^2+d^2)-3/4*d*exp(b*x+a)*sin(3*d*x+3*c)/(b^2+9*d^2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 538 vs. \(2 (107) = 214\).
time = 0.30, size = 538, normalized size = 4.52 \begin {gather*} -\frac {{\left (b^{3} \cos \left (3 \, c\right ) e^{a} + b d^{2} \cos \left (3 \, c\right ) e^{a} + 3 \, b^{2} d e^{a} \sin \left (3 \, c\right ) + 3 \, d^{3} e^{a} \sin \left (3 \, c\right )\right )} \cos \left (3 \, d x\right ) e^{\left (b x\right )} + {\left (b^{3} \cos \left (3 \, c\right ) e^{a} + b d^{2} \cos \left (3 \, c\right ) e^{a} - 3 \, b^{2} d e^{a} \sin \left (3 \, c\right ) - 3 \, d^{3} e^{a} \sin \left (3 \, c\right )\right )} \cos \left (3 \, d x + 6 \, c\right ) e^{\left (b x\right )} - {\left (b^{3} \cos \left (3 \, c\right ) e^{a} + 9 \, b d^{2} \cos \left (3 \, c\right ) e^{a} - b^{2} d e^{a} \sin \left (3 \, c\right ) - 9 \, d^{3} e^{a} \sin \left (3 \, c\right )\right )} \cos \left (d x + 4 \, c\right ) e^{\left (b x\right )} - {\left (b^{3} \cos \left (3 \, c\right ) e^{a} + 9 \, b d^{2} \cos \left (3 \, c\right ) e^{a} + b^{2} d e^{a} \sin \left (3 \, c\right ) + 9 \, d^{3} e^{a} \sin \left (3 \, c\right )\right )} \cos \left (d x - 2 \, c\right ) e^{\left (b x\right )} + {\left (3 \, b^{2} d \cos \left (3 \, c\right ) e^{a} + 3 \, d^{3} \cos \left (3 \, c\right ) e^{a} - b^{3} e^{a} \sin \left (3 \, c\right ) - b d^{2} e^{a} \sin \left (3 \, c\right )\right )} e^{\left (b x\right )} \sin \left (3 \, d x\right ) + {\left (3 \, b^{2} d \cos \left (3 \, c\right ) e^{a} + 3 \, d^{3} \cos \left (3 \, c\right ) e^{a} + b^{3} e^{a} \sin \left (3 \, c\right ) + b d^{2} e^{a} \sin \left (3 \, c\right )\right )} e^{\left (b x\right )} \sin \left (3 \, d x + 6 \, c\right ) - {\left (b^{2} d \cos \left (3 \, c\right ) e^{a} + 9 \, d^{3} \cos \left (3 \, c\right ) e^{a} + b^{3} e^{a} \sin \left (3 \, c\right ) + 9 \, b d^{2} e^{a} \sin \left (3 \, c\right )\right )} e^{\left (b x\right )} \sin \left (d x + 4 \, c\right ) - {\left (b^{2} d \cos \left (3 \, c\right ) e^{a} + 9 \, d^{3} \cos \left (3 \, c\right ) e^{a} - b^{3} e^{a} \sin \left (3 \, c\right ) - 9 \, b d^{2} e^{a} \sin \left (3 \, c\right )\right )} e^{\left (b x\right )} \sin \left (d x - 2 \, c\right )}{8 \, {\left (b^{4} \cos \left (3 \, c\right )^{2} + b^{4} \sin \left (3 \, c\right )^{2} + 9 \, {\left (\cos \left (3 \, c\right )^{2} + \sin \left (3 \, c\right )^{2}\right )} d^{4} + 10 \, {\left (b^{2} \cos \left (3 \, c\right )^{2} + b^{2} \sin \left (3 \, c\right )^{2}\right )} d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*cos(d*x+c)*sin(d*x+c)^2,x, algorithm="maxima")

[Out]

-1/8*((b^3*cos(3*c)*e^a + b*d^2*cos(3*c)*e^a + 3*b^2*d*e^a*sin(3*c) + 3*d^3*e^a*sin(3*c))*cos(3*d*x)*e^(b*x) +
 (b^3*cos(3*c)*e^a + b*d^2*cos(3*c)*e^a - 3*b^2*d*e^a*sin(3*c) - 3*d^3*e^a*sin(3*c))*cos(3*d*x + 6*c)*e^(b*x)
- (b^3*cos(3*c)*e^a + 9*b*d^2*cos(3*c)*e^a - b^2*d*e^a*sin(3*c) - 9*d^3*e^a*sin(3*c))*cos(d*x + 4*c)*e^(b*x) -
 (b^3*cos(3*c)*e^a + 9*b*d^2*cos(3*c)*e^a + b^2*d*e^a*sin(3*c) + 9*d^3*e^a*sin(3*c))*cos(d*x - 2*c)*e^(b*x) +
(3*b^2*d*cos(3*c)*e^a + 3*d^3*cos(3*c)*e^a - b^3*e^a*sin(3*c) - b*d^2*e^a*sin(3*c))*e^(b*x)*sin(3*d*x) + (3*b^
2*d*cos(3*c)*e^a + 3*d^3*cos(3*c)*e^a + b^3*e^a*sin(3*c) + b*d^2*e^a*sin(3*c))*e^(b*x)*sin(3*d*x + 6*c) - (b^2
*d*cos(3*c)*e^a + 9*d^3*cos(3*c)*e^a + b^3*e^a*sin(3*c) + 9*b*d^2*e^a*sin(3*c))*e^(b*x)*sin(d*x + 4*c) - (b^2*
d*cos(3*c)*e^a + 9*d^3*cos(3*c)*e^a - b^3*e^a*sin(3*c) - 9*b*d^2*e^a*sin(3*c))*e^(b*x)*sin(d*x - 2*c))/(b^4*co
s(3*c)^2 + b^4*sin(3*c)^2 + 9*(cos(3*c)^2 + sin(3*c)^2)*d^4 + 10*(b^2*cos(3*c)^2 + b^2*sin(3*c)^2)*d^2)

________________________________________________________________________________________

Fricas [A]
time = 2.94, size = 109, normalized size = 0.92 \begin {gather*} \frac {{\left (b^{2} d + 3 \, d^{3} - 3 \, {\left (b^{2} d + d^{3}\right )} \cos \left (d x + c\right )^{2}\right )} e^{\left (b x + a\right )} \sin \left (d x + c\right ) - {\left ({\left (b^{3} + b d^{2}\right )} \cos \left (d x + c\right )^{3} - {\left (b^{3} + 3 \, b d^{2}\right )} \cos \left (d x + c\right )\right )} e^{\left (b x + a\right )}}{b^{4} + 10 \, b^{2} d^{2} + 9 \, d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*cos(d*x+c)*sin(d*x+c)^2,x, algorithm="fricas")

[Out]

((b^2*d + 3*d^3 - 3*(b^2*d + d^3)*cos(d*x + c)^2)*e^(b*x + a)*sin(d*x + c) - ((b^3 + b*d^2)*cos(d*x + c)^3 - (
b^3 + 3*b*d^2)*cos(d*x + c))*e^(b*x + a))/(b^4 + 10*b^2*d^2 + 9*d^4)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 3.20, size = 1040, normalized size = 8.74 \begin {gather*} \begin {cases} x e^{a} \sin ^{2}{\left (c \right )} \cos {\left (c \right )} & \text {for}\: b = 0 \wedge d = 0 \\\frac {i x e^{a} e^{- 3 i d x} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {3 x e^{a} e^{- 3 i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8} - \frac {3 i x e^{a} e^{- 3 i d x} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} - \frac {x e^{a} e^{- 3 i d x} \cos ^{3}{\left (c + d x \right )}}{8} - \frac {e^{a} e^{- 3 i d x} \sin ^{3}{\left (c + d x \right )}}{24 d} + \frac {i e^{a} e^{- 3 i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {i e^{a} e^{- 3 i d x} \cos ^{3}{\left (c + d x \right )}}{24 d} & \text {for}\: b = - 3 i d \\\frac {i x e^{a} e^{- i d x} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {x e^{a} e^{- i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8} + \frac {i x e^{a} e^{- i d x} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} + \frac {x e^{a} e^{- i d x} \cos ^{3}{\left (c + d x \right )}}{8} + \frac {3 e^{a} e^{- i d x} \sin ^{3}{\left (c + d x \right )}}{8 d} - \frac {i e^{a} e^{- i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} - \frac {i e^{a} e^{- i d x} \cos ^{3}{\left (c + d x \right )}}{8 d} & \text {for}\: b = - i d \\- \frac {i x e^{a} e^{i d x} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {x e^{a} e^{i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8} - \frac {i x e^{a} e^{i d x} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} + \frac {x e^{a} e^{i d x} \cos ^{3}{\left (c + d x \right )}}{8} + \frac {3 e^{a} e^{i d x} \sin ^{3}{\left (c + d x \right )}}{8 d} + \frac {i e^{a} e^{i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {i e^{a} e^{i d x} \cos ^{3}{\left (c + d x \right )}}{8 d} & \text {for}\: b = i d \\- \frac {i x e^{a} e^{3 i d x} \sin ^{3}{\left (c + d x \right )}}{8} + \frac {3 x e^{a} e^{3 i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8} + \frac {3 i x e^{a} e^{3 i d x} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{8} - \frac {x e^{a} e^{3 i d x} \cos ^{3}{\left (c + d x \right )}}{8} - \frac {e^{a} e^{3 i d x} \sin ^{3}{\left (c + d x \right )}}{24 d} - \frac {i e^{a} e^{3 i d x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} - \frac {i e^{a} e^{3 i d x} \cos ^{3}{\left (c + d x \right )}}{24 d} & \text {for}\: b = 3 i d \\\frac {b^{3} e^{a} e^{b x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} + \frac {b^{2} d e^{a} e^{b x} \sin ^{3}{\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} - \frac {2 b^{2} d e^{a} e^{b x} \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} + \frac {3 b d^{2} e^{a} e^{b x} \sin ^{2}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} + \frac {2 b d^{2} e^{a} e^{b x} \cos ^{3}{\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} + \frac {3 d^{3} e^{a} e^{b x} \sin ^{3}{\left (c + d x \right )}}{b^{4} + 10 b^{2} d^{2} + 9 d^{4}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*cos(d*x+c)*sin(d*x+c)**2,x)

[Out]

Piecewise((x*exp(a)*sin(c)**2*cos(c), Eq(b, 0) & Eq(d, 0)), (I*x*exp(a)*exp(-3*I*d*x)*sin(c + d*x)**3/8 + 3*x*
exp(a)*exp(-3*I*d*x)*sin(c + d*x)**2*cos(c + d*x)/8 - 3*I*x*exp(a)*exp(-3*I*d*x)*sin(c + d*x)*cos(c + d*x)**2/
8 - x*exp(a)*exp(-3*I*d*x)*cos(c + d*x)**3/8 - exp(a)*exp(-3*I*d*x)*sin(c + d*x)**3/(24*d) + I*exp(a)*exp(-3*I
*d*x)*sin(c + d*x)**2*cos(c + d*x)/(4*d) + I*exp(a)*exp(-3*I*d*x)*cos(c + d*x)**3/(24*d), Eq(b, -3*I*d)), (I*x
*exp(a)*exp(-I*d*x)*sin(c + d*x)**3/8 + x*exp(a)*exp(-I*d*x)*sin(c + d*x)**2*cos(c + d*x)/8 + I*x*exp(a)*exp(-
I*d*x)*sin(c + d*x)*cos(c + d*x)**2/8 + x*exp(a)*exp(-I*d*x)*cos(c + d*x)**3/8 + 3*exp(a)*exp(-I*d*x)*sin(c +
d*x)**3/(8*d) - I*exp(a)*exp(-I*d*x)*sin(c + d*x)**2*cos(c + d*x)/(4*d) - I*exp(a)*exp(-I*d*x)*cos(c + d*x)**3
/(8*d), Eq(b, -I*d)), (-I*x*exp(a)*exp(I*d*x)*sin(c + d*x)**3/8 + x*exp(a)*exp(I*d*x)*sin(c + d*x)**2*cos(c +
d*x)/8 - I*x*exp(a)*exp(I*d*x)*sin(c + d*x)*cos(c + d*x)**2/8 + x*exp(a)*exp(I*d*x)*cos(c + d*x)**3/8 + 3*exp(
a)*exp(I*d*x)*sin(c + d*x)**3/(8*d) + I*exp(a)*exp(I*d*x)*sin(c + d*x)**2*cos(c + d*x)/(4*d) + I*exp(a)*exp(I*
d*x)*cos(c + d*x)**3/(8*d), Eq(b, I*d)), (-I*x*exp(a)*exp(3*I*d*x)*sin(c + d*x)**3/8 + 3*x*exp(a)*exp(3*I*d*x)
*sin(c + d*x)**2*cos(c + d*x)/8 + 3*I*x*exp(a)*exp(3*I*d*x)*sin(c + d*x)*cos(c + d*x)**2/8 - x*exp(a)*exp(3*I*
d*x)*cos(c + d*x)**3/8 - exp(a)*exp(3*I*d*x)*sin(c + d*x)**3/(24*d) - I*exp(a)*exp(3*I*d*x)*sin(c + d*x)**2*co
s(c + d*x)/(4*d) - I*exp(a)*exp(3*I*d*x)*cos(c + d*x)**3/(24*d), Eq(b, 3*I*d)), (b**3*exp(a)*exp(b*x)*sin(c +
d*x)**2*cos(c + d*x)/(b**4 + 10*b**2*d**2 + 9*d**4) + b**2*d*exp(a)*exp(b*x)*sin(c + d*x)**3/(b**4 + 10*b**2*d
**2 + 9*d**4) - 2*b**2*d*exp(a)*exp(b*x)*sin(c + d*x)*cos(c + d*x)**2/(b**4 + 10*b**2*d**2 + 9*d**4) + 3*b*d**
2*exp(a)*exp(b*x)*sin(c + d*x)**2*cos(c + d*x)/(b**4 + 10*b**2*d**2 + 9*d**4) + 2*b*d**2*exp(a)*exp(b*x)*cos(c
 + d*x)**3/(b**4 + 10*b**2*d**2 + 9*d**4) + 3*d**3*exp(a)*exp(b*x)*sin(c + d*x)**3/(b**4 + 10*b**2*d**2 + 9*d*
*4), True))

________________________________________________________________________________________

Giac [A]
time = 0.40, size = 98, normalized size = 0.82 \begin {gather*} -\frac {1}{4} \, {\left (\frac {b \cos \left (3 \, d x + 3 \, c\right )}{b^{2} + 9 \, d^{2}} + \frac {3 \, d \sin \left (3 \, d x + 3 \, c\right )}{b^{2} + 9 \, d^{2}}\right )} e^{\left (b x + a\right )} + \frac {1}{4} \, {\left (\frac {b \cos \left (d x + c\right )}{b^{2} + d^{2}} + \frac {d \sin \left (d x + c\right )}{b^{2} + d^{2}}\right )} e^{\left (b x + a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(b*x+a)*cos(d*x+c)*sin(d*x+c)^2,x, algorithm="giac")

[Out]

-1/4*(b*cos(3*d*x + 3*c)/(b^2 + 9*d^2) + 3*d*sin(3*d*x + 3*c)/(b^2 + 9*d^2))*e^(b*x + a) + 1/4*(b*cos(d*x + c)
/(b^2 + d^2) + d*sin(d*x + c)/(b^2 + d^2))*e^(b*x + a)

________________________________________________________________________________________

Mupad [B]
time = 3.01, size = 166, normalized size = 1.39 \begin {gather*} \frac {{\mathrm {e}}^{a+b\,x}\,\left (\cos \left (d\,x\right )-\sin \left (d\,x\right )\,1{}\mathrm {i}\right )\,\left (\cos \left (c\right )-\sin \left (c\right )\,1{}\mathrm {i}\right )}{8\,\left (b-d\,1{}\mathrm {i}\right )}-\frac {{\mathrm {e}}^{a+b\,x}\,\left (\cos \left (3\,d\,x\right )+\sin \left (3\,d\,x\right )\,1{}\mathrm {i}\right )\,\left (\cos \left (3\,c\right )+\sin \left (3\,c\right )\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{8\,\left (-3\,d+b\,1{}\mathrm {i}\right )}+\frac {{\mathrm {e}}^{a+b\,x}\,\left (\cos \left (d\,x\right )+\sin \left (d\,x\right )\,1{}\mathrm {i}\right )\,\left (\cos \left (c\right )+\sin \left (c\right )\,1{}\mathrm {i}\right )\,1{}\mathrm {i}}{8\,\left (-d+b\,1{}\mathrm {i}\right )}-\frac {{\mathrm {e}}^{a+b\,x}\,\left (\cos \left (3\,d\,x\right )-\sin \left (3\,d\,x\right )\,1{}\mathrm {i}\right )\,\left (\cos \left (3\,c\right )-\sin \left (3\,c\right )\,1{}\mathrm {i}\right )}{8\,\left (b-d\,3{}\mathrm {i}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*exp(a + b*x)*sin(c + d*x)^2,x)

[Out]

(exp(a + b*x)*(cos(d*x) - sin(d*x)*1i)*(cos(c) - sin(c)*1i))/(8*(b - d*1i)) - (exp(a + b*x)*(cos(3*d*x) + sin(
3*d*x)*1i)*(cos(3*c) + sin(3*c)*1i)*1i)/(8*(b*1i - 3*d)) + (exp(a + b*x)*(cos(d*x) + sin(d*x)*1i)*(cos(c) + si
n(c)*1i)*1i)/(8*(b*1i - d)) - (exp(a + b*x)*(cos(3*d*x) - sin(3*d*x)*1i)*(cos(3*c) - sin(3*c)*1i))/(8*(b - d*3
i))

________________________________________________________________________________________